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ABSTRACT 

Let T be an (into linear) isometry on a (real or complex) Lorentz function 

space Lw,p, 1 ~ p ~ oo. We show that if f and g have disjoint support, 

then T f  and T# also have disjoint support. Using this result, we give a 

characterization of the isometries of Lw,p. 

1. Introduct ion  

For any measurable function f on (0, oo), the distr ibut ion funct ion  dr, and 
the decreasing rearrangement  f* of f are defined by 

dr(0 = (Ifl > t), 
f*(t) = inf{8  > O: di(8 ) _< t} 
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(where/J denotes the Lebesgue measure). Let w be a strictly decreasing positive 

function on (0, oo) such that 

/o /0 lira w(t)  = co, l i m  w(t) = O, w(t)dt  = 1, and w(t)dt  = ~ .  t.--*O 
For any I < p < r the Loren tz  space  Lw,p is the space of all measurable 

functions f on (0, ~ )  for which 

(fOOO(f )lip 
I1111 = *)'(t)w(t)dt 

If w(t)  = ptP/,-I for some 1 < p < q < co, we shall denote the Lorentz space L~,,p q 

by L~,p. It is known that the following mappings are isometrics on real Lq,p: 

(i) for any A > O, Dx( f ) ( t )  = A-11 ' f ( t /A);  

(ii) for any +l-valued measurable function e(t), S , ( f ) ( t )  = e(t) f( t);  

(iii) for any measure-preserving transformation a, R~( f ) ( t )  = f (a ( t ) )  (for 

definition of measure-preserving transformation, see section 2). 

Let T be an isometry on Lw,p, 1 < p < oo. One may ask the following question. 

Question 1: Do there exist s and A such that ( T f ) * ( t )  = s f* ( t /A )  for all f �9 

L~,,p and t e (0, oo)? 

For any measurable function f ,  supp f denotes the set 

{ t : / ( t )  # 0}. 

In [C-Tr], B. Turett and the first author studied the extreme points of the unit 

ball of Lq,1, 1 < q < oo. They proved that T is a linear isometry from Lg,1 into 

itself if and only if there exists a A =/~(supp ( T 110,1])) such that 

(T f)*(t)  = ~-l /qf*(t / )~) .  

Recently, S. J. Dilworth, D. A. Trautman, and the first author [C-D-T] studied 

the extreme points of the unit ball of Lw,l[0, 1] and they proved that if T is a 

surjective isometry from Lw,1 onto itself, then (T f )*( t )  = f*( t )  for all 0 < t < 1. 

Let X be a Banach space and let x be any element on the unit sphere of X.  

X is said to have a G a t e a u x  d i f fe rent lab le  n o r m  at x if for every y E X 

lira + - I lx l l  
e-..*O 
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exists. Let 1 < p < c~ and let f be any element on the unit sphere of Lw,p. 

It is known that  Lw,p has a Gateaux differentiable norm at f if and only if 

#{Ifl = s} = 0 for any s > 0. In this article, we study the difference 

lira fly + egll' - llfll p _ lira fly + egll' - llfll p 
eJ.O e eTO e 

for some f ,  g G Lw,e (particularly, f and g are characteristic functions) and we 

prove the following theorem. 

MAIN THEOREM: Let T be a linear Jsometry s Lw,e, 1 _< p < e~, into Jtse/s 

Then 

(T f) '( t )  = , f*(t /~) 

where )~ = p(supp(Tl(o,1))) and s = ~ .  Moreover, ff s # 1, then w(7) = 

sP J~w( /X7 ) almost everywhere. 

This shows the answer of Question 1 is atrxrmative. 

The remainder of the article is divided into four sections. In section 2, we study 

the directional derivative of Lw,p norm, and we prove that  for any f ,  g E L~,,p, 

lira Ill + egll p - Ilfll p = l ira  Ill + egll p - Ilfll p 
dO e eTO e 

if and only if for any s > 0, either p(Ifl = s) = 0 or g sgnf  is constant on If[- l(s) .  

In sections 3, 4 and 5, we use this result to prove the Main Theorem when Lw,p 

is real L,~,p(O, oo), real L,~,p(0,1), or complex L,,p.  

Part of the work was done when the third author visited University of Texas at 

Austin. He would like to thank the kind hospitality offered to him. The authors 

would also like to thank the referee for his valuable suggestions. 

2 .  S o m e  l e m m a s  

Recall a measurable mapping ~r from (0, ~ )  to (0, ~ )  is said to be me a s u r e -  

p re se rv ing  if for every measurable set A, p(A) = p(a-l(A)).  It is known that  

for any measure-preserving transformation ~ and any measurable function f ,  

f* -- ( f  o c)*. For any two measurable functions f and 9 ,  let cr be defined by 
(,) 

o'(t) =p({t ' :  ]f(t')] > ]f(t)l}) 

+ ~({t': If(t')l = If(t)l and g(t ' )sgn(f( t ' ) )  > g(t)sgn(f(t))}) 

+ ~({t ' :  If(t')l  = If(t)l ,  g ( t ' ) s g n ( f ( t ' ) )  = g ( t ) s g n ( f ( t ) ) ,  a n d  t' < t} )  
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where t E (0, co). It is easy to see that a satisfies the following conditions: 

(o) if p(supp f )  < oo, then ~r is a measure-preserving mapping from R into 

R; otherwise, it is a measure-preserving mapping from supp f into R; 

(i) If[ = f*  o ~, and IIf[I = ( f  Ifl pw o ~dt)a/'; 
(ii) w o a( t l )  > w o a(t2) if one of the following conditions holds. 

(a) I f ( t l ) l  > If(t2)[; 
(b) [ f ( t l ) l  = [f(t~)[ and g(t l)sgn(f( t l ))  > g(t2)sgn(f(t2)); 
(c) If(tl)l = If(tz)l, g(tl) sgn (f(ta)) = g(t2) sgn (f(tz)),  and t~ < t2. 

First, we assume that e~ > p > 1. 

LEMMA 1: Suppose that ~ > p > 1. Let f be a positive decreasing function in 

Lw,p and let g be another function in Lw,p such that ff  s > 0 and p ( f  = s) ~ O, 

then g is decreasing (respectively, increasing) on f-Z(s).  Then 

lira IIf + egll '  - Ilfll p = p / g f p - z  wdt 
~,tO e J 

(respectively, lira, X0 II f -t- eg I1'~ - II fll p = p / gfV- '  wdt). 

Proof'. We only prove the first equality and the other is left to the reader. 

Since f is a nonnegative decreasing function, 

lira IIf + egllP - Ilfll p > lira f ( I f  + eg? - Iflp)wdt = p / g  f , - 1  wdt. 
~J.o e - -  EJ, O e / 

To prove the other direction, we may assume g is a bounded function. For any 

e > 0, let or, (replace f by f + eg in (*)) he a measure-preserving mapping which 

satisfies the following conditions: 

(i) I f  + egl = ( f  + eg)* o a,;  
(ii) w o a , ( t l )  > w o a,(t2) if one of the following conditions holds. 

(a) I(f  + eg)(tx)l > I(f  + eg)(tz)l; 
(b) I(f  + eg)(ta)l = I(f + eg)(t2)l and 

g(tz) sgn(f  + eg)(tz) > g(t2) sgn(f  + eg)(t2); 

(e) I(f  + eg)(tl) l  = I(f  + eg)(t2)l, 
g(tz)sgn( f  + eg)(tl) = g(t2)sgn(f  + eg)(t2) and tl < t2. 

Then there exists 0 < a ,  < e such that 

IIf + 'gll P - Ilfll p < f ( I f  + eglP - I f ? )  w o a, dt 

p i g .  s g n ( f  + a,g) . If + c~,gl p-l " w o q, dt. 
J 
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Since both f and w are nonnegative decreasing functions and the restriction of g 

to f - l ( s )  is decreasing for any s > 0 with p ( f  = s) > O, we have lim,~o a,(t)  = t. 

The verification of 

limp [ g. sgn(.f + ,~,a). I.f + '~,gl~-"w o a, dt = V / a  f -~wdt  
�9 ,to J J 

is left to the reader. | 

Let a be any measure-preserving transformation, and let A be any measurable 

set such that  A = a - l ( B )  for some measurable set B with p(B) > O. A measur- 

able function f is said to be dec reas ing  (respectively, increas ing)  with respect 

to # on A if for almost all t l ,  t2 E A, f ( t l )  > f(t2) (respectively, f ( t l )  < f( ta))  

implies w o a ( t l )  > w o v(ta). If A = (0,oo), then we say f is decreasing with 

respect to v. Lemma 1 can be restated as: 

LEMbIA 2: Let f ,  g be any two elements of Lw,p and let a, a' be two measure 

preserving transformations wheh satisfy the following conditions: 

(a) Ill is decreasing with respect to # (respectively, a'); 

(b) if  s > 0 and ~(l/I  = s) > 0, then g s g n f  is decreasing (respectively, 

hacreasing) with respect to v (respectively, a') on l / I - l ( s ) .  

Then 

lim,10 I l l +  'all', - II/ItP -- pfg [fl  p -1  ( sgn f )w o adt 

(respectively, lim, r0 I I / +  ,gll p, - I I f l IP  = lYl p-a  ( s g n y )  w o ~'dt). 

Remark 1: Suppose that or > p > 1. It is known that  there is a measurable 

function f such that  for any measure-preserving transformation a, f* ~ Ill o a. 

But for any f ,  g E Lw,v, there exist measure-preserving transformations a and 

a ~ which satisfy the assumptions of Lemma 2. Hence, for simplifying our proofs, 

we assume that for any measurable function f ,  there is a measure-preserving 

mapping a such that f* = I l l  o a. We leave all details to the reader. 

Remark 2: It is known [P] that  if X is a Banach space, then for any z, y E X, 

Ilzll = 1 = Ilull, 

lira IIz + 'Yl]' - Ilzll p = p s u p { ( z * , y ) :  IIz*ll = 1 = ( z * , z ) } .  ~,l.O 

Lemma 1 is a corollary of the above well-known fact. | 

Since w is strictly decreasing, we have the following corollaries. 
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COROLLARY 3: Let f and g be any elements in L,o.v. Then 

lira [If + egllP - [[fl[' = lira I[f + eg][ p - Ilfl[' 
~J,O ~ ~TO e 

if ~ d  only ~f ~o~ a n ,  > 0 , / I f l  = ~) > 0 ~ p ~  9 " . ~ f  i ,  constant on I/I-1(~). 

COROLLARY 4: Let f be a nonnegative decreasing/.unction in L~,,p such that f 

is strictly decreasing on (0, 1) and (2, oo), and f ( t )  = 1 i f  I < t < 2. For any  

dement g E L~,,v, let 13 be the collection of measurable/.unctions h which satisfy 

the/.ollowing conditions: 

(i) h(t) = g(O i/.t E (0, 1)U (2,oo); 

(ii) for a n y r  E R, p({t Z (1,2): h(t) > r}) = p({t E (1,2): g(t) > r}). 

Then 

lim llf + egl[P - llflt p _ lim llf + ~gll p - llfll' 
~ 0  ~ ~TO e 

= s u p p  [ z  h(t)w(t)dt - inf p f2  h(t)w(t)dt.  
hEB J 1  hEB ,]1 

Let h be any dement in B. Then 

lim II.f + egll p - II/11 p _ lim I I / +  ~gll p - Ilfll p 
el.O e tTO e 

/: /: =p h(t) w(t)dt  - p  h ( 2  - t) w(t)dt  

i/' and only if h is decreasing on (1,2). 

COROLLARY 5: Let A be a finite measurable subset 0/'(0, ~ ) ,  and let B be any 

measurable subset of.4. 

lira Il la + e l~ l lP  - IIIAIIP - lira I I I A +  ~IBII p - IIIAII p 
~ o  e eTO e 

= ~up (lira IIIA + ~1cll ~ -II1AII ~ _ Xim II1A + ~1cll p --II1AIIP ~ 
CCA \ ~o e ~To e ./ 

/ / .and only i / ,p(B) = 1 ~p(A). 

COROLLARY 6: Let T be an isometry on Lw,e, and let A, B be any two disjoint 

J~nite measurable sets. Let f = T 1A and let g = T lB. Then for any r e a / n u m b e r  

a, the/,ollowing are equivalent: 

(a) there emsts s > 0 such that  P( I f  + ~gl = s) > 0 and g s g n ( f  + ag)  is not  

constant  on If  + ~gl-~(~); 
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(b) ~ ,/s+,,,g)+.ff-,s+-~,'. # ~ ,(s+-~)+.|,,'~ -,f+,~,'; 
(c) limelo II(1A+alv)+dSe lit --Ilia +alv II r # I t oim II(1 A +als)+~l~tll r --IlIA +ale t1" ," 

(d) ~ = • 

Remark 3: Let s be any positive real number such that P(If[ = s) > 0. By 

Corollary 6, g.  sgnf[ l I l - l ( ,  ) is constant. If g �9 sgnfllfl-~(o ) # 0, then 

(i) sgngllSl-,(. ) = +sgn.fllsl-l(o); 

(ii) [gl is constant on I f l - l ( s ) .  m 

If p = 1, Lemma 1 becomes 

LEMMA 7: Let f be a positive decreasing/'unction in Lw,1 and let g be any 

function in Lw,i such that 

(i) ff s # 0 and p ( f  = s) > O, then g [1_,(o) is decreasing (respectively, 

increasing); 

(ii) Igl Is-,(o) is decreasing. 

Then 

am Ill + ' g l l -  Ilfll = f,= g wdt + fR Igl wdt 
e~O E pp f \ supp J 

(respectively, lira Ill + ' g l l -  Ilf'I = f , .  gwdt + fR Iglwdt)" 
E TO ~ pp ~ supp f 

By Lemma 7, one easily sees that Corollaries 3-6 hold if p = 1. We leave all 

details to reader. 

3. T h e  i some t r i e s  on  Lw,p(0, c~), 1 _< p < c~ 

Let T be any isometry on L~,,p(0, c~). It is known that Lw,p is separable. To 

prove Main Theorem, it is enough to show that 

(i) there is s > 0 such that for any finite measurable set A, IT1A[ = SlB 

where B -- supp (T 1A); 

(ii) if A, B are two disjoint finite measurable sets, then T 1A and T l s  are 

disjoint. 

We do not know any easy way to prove (i) and (ii). Our proof is divided into 

seven steps. In the first three steps, we show that there is a unique s > 0 such 

that p([T1A[ = s) > 0 for any finite measurable set A. Moreover, if A and B 
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are two disjoint finite measurable subsets of (0, oc), then the restriction of T 1B 

to ITIAI-X(s) is zero. (This is equivalent to {t: ITl~l(t) = s} U {t: ITls l ( t )  --- 

s} C_ {t: IT 1AuBl(t) = s}.) Next, we show that if A and B are two disjoint finite 

measurable sets, then IT 1AuBl-'(s) = IT 1Al- '(s)U [ T lwl-l(s). The proof is 

quite long, and we do not know any simple proof. The proof contains two steps. 

Let A be any finite measurable set and let A1, A2, A3 be three disjoint proper 

measurable subsets of A such that A = A1 U A2 LI As. In step 4, we show that for 

any t E IT1AI-'(s), one of T1A,(t), T1A~(t), T1As(t) must be zero. (This is 

equivalent to at most two of T 1A, (t), T 1A,(t), T 1An(t) are nonzero.) In step 5, 

we show that at most one (so exact one) of them is nonzero. The remainder two 

steps show that tt({t: 0 < IT 1Al(t) # s}) = 0. Let A be any finite measurable 

subset of (0, oo). In step 6, we show that for any measurable subset B of A, 

/~(IT1A} = s) = g(lT 1B] = s) 
,(A) .(B) 

(Note: this implies that P(]T1A]-~s)/~(A) = /~(]T1B]=s)/~(B) for any two f-mite measur- 

able subsets A, B of (0, co).) Using this result, we show (step 7) that w(7 ) = 

srAw(AT). This implies for any finite measurable set A, 

[I1AII = IlsllT,~l-,( .)ll  _< [[ T 1AI[ = [[1All. 

So we must have [T1A[ = s IITIM-,(o ). 

(1) We claim that for any finite measurable set A, there exists s > 0 such that 

. ( I T  l a l  = s) > 0. 
Let A1, A2 be two disjoint subsets of A such that A1 U A2 -- A. We denote 

T 1A,, T 1A2 and T 1A by fl ,  f2 and f.  By Corollary 6, there exists s > 0 such 

that/~(}f] = s) > 0, and the restriction of fl  sgnf  to IfJ-l(s) is not constant. 

We proved our claim. 

(2) Let A, A1, f,  f~ and s be given as above. Let B be another finite mea- 

surable subset of (0, oc) such that B N A = 0, and let g = T lB. We claim that 

g Ii/l_t(s)= 0. 
Suppose that it is not true. By Remark 3, sgng Ii11_,(,)= :t:sgnf Ii/l_X(o) 

and the restriction of Igl to the set I/I-X(s) is constant. So there exists r > 0 

such that I/I-l(s) c Igl-l(r). Note: A1 and B are disjoint. By Remark 3 (or 

Corollary 6), the restriction of fl  sgng to Ig l - l ( r )  is constant. This implies 

/1 • .sgn g 
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is c o n s t a n t .  We  get  a con t r ad i c t i on .  So g Jj/[_1(s)= 0. 

Note: we did not prove that for any s > 0,/~([T 1/[ = s) > 0 implies T I B  = 0 

on [T1A[-I(s)  for every B such that A N B = •. We only proved that it is true 

for some s > 0. 

(3) We claim that there is a unique s > 0 such that for every finite measurable 

set A 

(i) if/~(A) > 0, then/~([T 1A[ = s) > 0; 

(ii) if r > 0 and r # s, then/~([T 1AI = r) = 0; 

(iii) for any two disjoint measurable sets A and B, IT 1A]-l(s) and IT 1 s [ - l ( s )  

are disjoint. 

Let s be the number given as above. Suppose r # 0 and  (Igl-l(r)) > o. By (2), 

g[lfl-l(~ = 0. Since B and A are disjoint, by Corollary 6, there exist c _> 0 and 

a = +1 such that 

f [igl_,(r)= a c .  sgn# llgi-,(r ). 

Hence, the restrictions of [ / +  ~ g[ and [ / +  " ( - , - c )  g[ to the set I/I-1(8),  
T 

191-1(r) are constant. By Corollary 6 again, we have 

8 - -C - - 8 - - C  
= •  and ~ = - 1 .  

r r 

But s # O. So c = 0 and r = s. We proved that for a fixed finite measurable set 

A, there is s > 0 such that for any r > 0 and any finite measurable set B which 

is disjoint with A, 

g(IT1BI = r )  >0  if and only if r = s. 

The remainder of the proof is left to the reader. 

From now on, s is a fixed positive number such that g([T 1A[ = s) > 0 for 

every finite measurable set A,/z(A) > 0. 

(4) Let A1, A2, As be three disjoint proper subsets of A such that A = A1 U 

A2 U As. We denote T 1A~, T 1A2 and T 1.4o b y / 1 ,  f2 a n d / 3 .  Without loss 

of generality, we assume that / is a nonnegative decreasing function and the 

restriction o f /1  - / 2  to the s e t / - l ( s )  = [a, b] is decreasing. 

We claim that 

(a) both f l  and - f 2  are decreasing on f - l ( s ) ;  

(h) f l f2f3  0. (So for every t E [a, bl, one of S l ( t ) , / 2 ( t ) , / s ( t )  must be 

zero.) 
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Suppose  claim (a) were proved. If  A1, Aa are two disjoint measurab le  subsets  

of A, and  if f = T1A, f l  = T1At, f2 = T1A2, then  there  exists a measure-  

preserving t r ans fo rmat ion  or such tha t  

(i) If] is decreasing with  respect  to or; 

(ii) ( f l  - f 2 ) s g n  f ,  f l  sgn f and  - f 2  sgn f are decreasing with respect  to or on 

Ifl-X(s). 
P r o o f  of  (a): Withou t  loss of  generality, we m a y  assume tha t  A1 = (0, c], Aa = 

(c, d) and  A2 = [d, 1]. Then  

p/' :l(0S,-1(0w(t)d~-p/' :,(. + b-0s'-l(0w(0dt 

I' /: + p (-y2)(O/'-~(t)w(Odt - p  ( - / ~ ) ( ~  + b - Of' -~(Ow(Odt 

--, - - , - + t)fP-l(t)w(t)dt 

=lim Ill + e(fl - -  f2)II p - IIfII p _ lim ]If + e(fl - f2)]I p - ]Ifil p 
e~0 e eT0 

= l i m  IlIA + e(IAt -- IA,)I[ p - ][1AI[ p _ l im IlIA + e(1At -- 1A=)]I p - IIIAII p 
,i0 e ,TO e: 

s I' = p  (1At -- 1A,)(t)w(f)dt --p (1At -- 1a , ) (1  -- t)w(t)dt 

=p ~l lAt(')w(')df, - p ~I IAt(1- f)w(t)dt 

+ p ff(-IA,)(t)w(t)d*- p --f'(--IA,)(l --t)~(*)dt 

=lira Ilia + ~IA, II p - IIIAF _ lira IIIA + *IA, II p -- IIIAII" 
e~0 e eTO 

+ l i m  I l i a  - d A ,  IIp - - i l I A I I  p _ l i r a  I l i A  - d A ,  IIp - - I I I A I I  p 
e~0 E eTO e 

= l i m  II.f + e.hll p - I l f l l  p _ l ira II.f + e.hll p - II.fII p 
eJ, O e eT0 e 

+ ~ m  II.f - eY211 e - II.f l l  e _ l i r a  I lY - ~Y2II p - l i : ' I i  p 
.eJ.0 ~ eT0 e 

By Corol lary  4, we have 

p [b:~ ( 0 / P - '  (0, , , ( t )d* - p / ' : ~  (a + b - t)fe-l(t)w(t)dt 
V t 8  

= l i r a  I I / +  e f ~ l l  p - l i / l l  p _ l i ra  I 1 / +  ~ /1  II p - II/ i i  p ' 
(10 e eTO e 
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and 

p f (-s )(Os'-l(Ow(Oet-p + b- Os,-x(o (Odt 

=lira  II/- ef2l[ p - I I / l l '  
(~0 e (TO e 

278 

- lira Il l  - ~f211P - Ilfll p 

By Corollary 4 again, both f l  and - f 2  are decreasing on [a, b I. We proved (a). 

Proof of (b): Note that  

(iii) f l  and - / 2  are decreasing on [a, hi; 
( iv)  If31-X(s)  : [a,b]; 

(v) since ~(If31 = 8) > 0, both f l  and f2 are zero on If31-1(8) .  

There exist c', d', a < c' < d' < b, such that  f l  and f2 are zero on (c', d'). So 

- f l f 2  must be nonnegative on [a, b]. Similarly, - fs f2  and - fa l l  are nonnega- 
tire on [a, b] (since any rearrangement does not change the sign). This implies 

- ( f l f2 fs)  2 is nonnegntive on [a, b]. And flf2fs must be zero on [a, b]. We proved 

our claim. 

(5) We claim that  for any t ~ [a,b], exact one of f~(t), f2(t), fs(t)  is nonzero. 
Suppose that  the claim were proved. Then for any two disjoint finite measurable 

sets A and B, we have 

(i) [TIAI-I (s)  and [T1BI-I(s)  are disjoint; 

(ii) IT 1AuBl-l(s) = IT 1A[-l(s) U IT 1Bl-l(s);  

(iii) T 1A" sgn(T 1AuB) ]ITIA,~[_,(~ S llTl~l-t(s).  

Suppose the claim is not true. Without  loss of generality, we may assume that  

there exists t, a < t < b, such that  

/1(0 + / , ( t )  = 8, /~(t) > o and /2(0 < o. 

Since both f l  and -f2 are decreasing on [a, b], for any t '  6 [a, t), 

/1( t ' )  > 8, < o, and / , ( t ' )  = o. 

Let [a,c) = {t'  e [a,b]: f l( t ' )  > s}. (So c > a.) Then 

(iv) /1 is strictly decreasing a n d / 1  > s on [a, c). 
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SUBCLMM 1: f31[,,,r = O. Note: / s  is zero on  [a,t] .  Suppose Subclaim 1 is not 

true. Then there exists r E (t, c) such that fs(r) < 0 and f2(r) = 0. Note: the 

- f 2  is decreasing on [a, b], and f l  + f2 + f3 = s on [a, b]. So we have 

(v) fa is negative on (r, c) (because fz _> 0 and f l  > s on (r, c)). 

(Note again: fa is zero on [a,t) and t < r.) So for any measure-preserving 

mapping a on In, hi, either f l  o a is not decreasing or ( - f a )  o a is not decreasing. 

We get a contradiction. 

Let .44 and A5 be two disjoint measurable subsets of Az such that Az = A4UAs. 

SUBCLAIM 2: If T 1A, l[a,c) ~ 0, then T 1A, [[a,c) = 0. By (4), there is a measure- 

preserving transformation a on [a, b] such that both (T1A,) o a and (--T1A4) o a 

are decreasing. Since s is strictly decreasing on [a, c] the restriction of a to [a, c] 

is identity. But T1A4][o,r ~ 0. So the above proof shows T1AsuAs][,,c) = 0 and 
T 1A, [[,,c) = 0 (note: we already proved that T 1A. is zero on In, c]). We proved 

subclaim 2. 

Since A has finite measure, for any e > 0, there is a partition {B1,B2,... ,B~) 
of A2 such that p(Bi) < e for all 1 _< j _< k. The above argument shows that for 

some 1 _< j _< k, T1Bj [[,,r = f2[[o,c]. But T is an isometry. This is impossible. 

We proved our claim. 

(6) Let A be any finite measurable set and let f = T 1A. We claim that for 

any measurable subset B of A, 

/~(IT1A[ = s) /~([T1BI = , )  
~(A) uCB) 

(5) shows that for any subset B of A 

T 1B s g n f  IlIl_l(,)= s IIT1B]-,(, ). 

Since T is continuous, there exists a measurable subset A1 of A such that 

/~([T 1A,] ---- s) = ' / = ~ ' ( I  I '). So 

n m  II1A + ~IA, I1' - II1~11' _ l im  II1A + el.~, IIp - I I IAI I '  

= l im I I / +  eT 1A, II' - UI I  P _ l i m  I I / +  eT 1A, l[ p - UII  p 
~0 e ~TO e 

(lira II/+ eT I~IIP - I I / l l  p _ lim I I /+  eT 1all p -II/I[P~ sup 
BC_A ~0 E eTO E ] 

(lim Il l A + ~ l  BII ~ - IIIAII ~ _ l i m  I11,~ + ~1 ~11 ~ - I l l  All ~ ~ .  sup 
BC.A X, eJ.O e ,eTO e ] 
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By Coronary 5, p(A1) = �89 Hence, for any subset A1 of A, p(A,) = �89 
if and only if #(IT 1at I = s) = �89 lal = s). By induction, we have 

#(A1) = l p ( A )  if and only if p(IT1At[=s)= I#(IT1A I =s). 

Since T is continuous, we must have 

#(IT1AI = s) ~,(ITIBI = s) 
~ ( A )  0,(.e) 

for any measurable subset B of A. Let A = ~,(ITlal=J) The proof also shows for ~(A) �9 
any finite measurable subset B of (0, cr 

#(IT 1B[ = s) = A. 
~,(n)  

(7) We claim that for any 3, > 0, w(3,) = aPAw(A3,). Let A be any finite 

measurable set and let fl = #([T(1A)[ > s). If A1 is a measurable subset of A, 

by (5) and (6) 

(i) {t: IT 1A, I(t) = s} c_ {t: IT 1Al(t) = s}; 

(ii) t ,(IT 1AI = s)  = At,(A), and #(IT1A~I = s) = Ap(A1).  

(iii) T 1A. sgn(T 1AoB) [iTiAunl_X(o)---- S IlTIAI-X(j). 

Hence, if #(A1) = 3, < 2e~ )', then 

(**) 

- P Jo~(A)-'y 

-- t im II1A + ~I.A, II p -- II1AII p _ tim Il ia + ~IA, II p -- IIIAII p 
e,l,0 ~ eTO e 

= Um liT 1A + ~ f  1A, II p -- l iT 1All P _ lira liT 1A + eT 1A, li p - l i t  XAII p 
~J.o e ETO e 

P f x , + , s , w ( t ) d t  / , + X ~ ( A )  s'w(t)dt. 
~- d a  - -  P d f l + ) , ( # ( a ) - - 7 )  

Differentiating both sides with respect to 7, we get 

( .  �9 , )  w(3') - w(#CA) - 3') = s'A[w(/~ + ~3,) - w ( ~  + A(p(A)  - 3'))1. 

Let {Ai} be a sequence of finite measurable subsets of (0,o o) such that 

limi--.oo p(Ai) = cr and let/~i = p([T1A,)[ > s). Then for any 3' > 0, 

w(3,) - ~,O,(A,)  - 3') -< ,P~w(/~, + ~3,). 
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Since hmt--,oo w(t) = O, {fli: i E N} is bounded. Without loss of generality, we 

may assume that {fli} converges to ~. Then 

w('r)  = .lim (w(7)  - w(p(Ai) - 7)) 
I--+00 

= ilirnoo sV~[w(fli + ~7) - w(fli + ~(p(Ai) - 7))] 

=sP ,~w(# + ~'r) 

for almost all 7 E R. So for any finite measurable subset A of (0, oo), 

II1AII' 
_/t,(A) w(t)dt 
--JO 

/~(A) sPAw(# + At)dt 
~JO 
_/X~,(A) sPw(# + t)dt 
--JO 

[ a+ x~( a) sV w( t ) dt =j# 

</X~(A)  sVw(t) dt 
--JO 

=lls l ir , , t - , ( . ) l l  p _< l it  Xall p. 

But T is an isometry. So we must have 

~=0, HsI(o,x~(A))H--HTIAH, and (TIA)'----SI(o,x~(A)). 

We proved our Main Theorem. 

4. T h e  i some t r i e s  on  Lw,p(0,1) 

Let T be an isometry on Lw,p(0,1), and let A be any finite measurable subset of 

(0,1). In section 3, we proved that there exist s > 0 and )~ > 0 such that if A1 

is a measurable subset of A, then 

(i) {t: IT1Atl(t)=s} C_ {t: [T1AI(t)=s}; 
(ii) p(IYlA[---- s) ---- ~p(A), and p(IT1AI[---- s) = Ap(A1); 

(iii) T IA- sgn(T IAuB) l]TiAvs]_z(~) = 3 I ITIAI- I ( s ) .  

So we have 1 > p([T 1(0,1)[ = s) = A. 
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To characterize the isometries on Lw,e(0,1), we need more work. We divide the 

proof into six steps. In the first 4 steps (Steps 8-11), we consider the following 

four special cases: 

(iv) s = 1. 

(v) T is a surjective isometry. 

(vi) L,~,p = Lq,p. 

(vii) There is c > 0 such that w is linear on (0, c). (Note: in this article, we 

do not use the fact limt-.0+ w(t) = oo.) 

In Step 11, we show that if w is linear on (0,c) for some c > 0, then s = 1. 

Hence, for any measurable subset A of (0, 1), (T 1A)* = I(0,~(A)). (This is a fact 

which is proved in Step 8.) 

In Step 12 and Step 13, we show that p(IT1AI > s) = 0 and p(0 < IT1AI < 

�9 ) = 0 for every measurable subset A of (0, Z). 

Assume the above claims were proved. Then (TZA)* = s l(o,xt,(A)). This 

implies I" /?" w(t)dt = s'w(t)dt.  

So wC-r) = , '  x w(a-y). 

(8) We claim that if s = 1, then for any measurable subset A of (0, 1), (T 1A)* = 

I(0,~,(A)). L e t / ~ , ' / b e  two positive numbers such that/~ +~/_< 1. It is easy to see 

that 

(i) i f ~ + 2  2 _ < ~ , t h e n  

[P+~ w(tldt f+'w(tldt < w(tldt- w(tldt 
Ja Ja+~ Ja -~-~ 

1 

_< , , , ( t ) e  - w( t )d t ;  

(ii) if/~ + ~ > I ,  then 

ap+~ - Jx-p-~ a~+�89 

< fo�89 W(t)dt - f '  w(t)dt. 
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SO we h a v e  

_ wC~)d~ 

and the equality holds if and only if/~ = 0 and 7 = I. By (**) (with A = (0, I), 

A1 = (0, 1 

JO /2 J#+-~ 

So we must  have s > 1. Moreover, if s = 1, then A = 1. Hence, if s = 1, then 

TI(0,1 ) = l(o,U and (T 1A)* = I(0,/,(A)) 

for every measurable subset A of (0,1). 

(9) Let T be a surjective isometry on Lw,p(0,1). Since T -1 is also an isometry, 

there is s' > 0 such tha t  #(IT -1 1(0,1)1 = s') > 0. It is known tha t  s' > 1. 

We claim tha t  s I = s -1. If the claim is true, we must  have s = 1. By (8), 

( T 1A)* = I(0,#(A)) for every measurable subset A of ( 0, 1). 

In section 3, we proved tha t  for any (finite) measurable set A and any function 

f in Lw,v, if s u p p f  is disjoint with A, then T f  is zero on IT1AI-I(s). Let 

B1 = IT 1(0,1)1-1Cs), and let B2 = IT -1 C T 1(o,1)" 1B1)1-1 (s sS). The above remark 

shows 

T -1 ((T 1(0,1))" 1(0,1 ) \ B,) = 0 on B2. 

But  T -1 T l ( 0 j )  = 1(0,1). So we must  have s s '  = 1, and we proved our claim. 

(10) Let L~,p be an L~,p-space. It is easy to see tha t  

[X12 pt , I , -1  i X  pt ,I , -1 
dr-  dt 

Jo q JX/2 q 
_ - ,  

dt 
- -  O < / ~ < # - t - A < I  \J#  q J#+Xl2 q 

By (**) (with A = ( 0, 1), A1 = C 0, ~)) 

[1/' pt,/,-, f l pt,/,-1 
21- .  a -- 1 = - - d t  - - - , d r  

#o q /2 q 
[x12 psP trlq-1 [ x  PS" t ,Iq-1 

< dt - .dt 
Ijo q Jx 12 q 

=s t [2  (~A) r/q - At/q]. 
/. 
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This implies s >_ A -x/q >_ 1, and 

fo ~ psPff/q-1 dt = sp~p/q > 1 = I[1(0,1)11 p. [ITl(o,1)l[ p _> [[llTl(o,,)l-'(s)l[---- q 

Since T is an isometry, we must have 

s = A - l /q ,  (T1A)* = A-1/ql(0,~,(A)) and (T f )* ( t )  = A-1/r 

(11) Suppose that w is linear on (0, c) for some c > 0. We claim t h a t ,  = 1. 

Let w(t) = b - at whenever 0 < t < c. Let A be any measurable subset of (0,1) 

such that  p(A) < c. Let/~ = p([T1A] > s). Since H1AH = I[T1AI[ and s > 1, 

+ Ap(A) -- p(lT 1A[ >_ s) _< c. 

By (* * *), for almost all t �9 (0, ~2-~ )-) 

a ( / A )  - 2 0  =b - ~ t  - (b - a(~(A) - 0) 
=sP~[b - ~(~ + ~t) - (b - a(~ + ~ ( / A )  - 0)) l  

=sP ~2 . ( p ( A )  - 20 .  

Since a > 0, we have sPA 2 = 1. So 

f 
/~(supp (T 1A )) 

HT 1AH p = ( (T 1A)*)P(t)(b - at)dr 
Jo 

f 
o(A)~ 

>_ sP(b - at)dr 
Jo 
flA(A)A 1 

= Jo ~(b - at)dr 

f 
~(A) 

>__ b - a t  dt  = IIIAll ' ,  
J0 

and the equality holds if and only if ~ = 1 (and s = 1). We proved our claim. 

Now, we prove the general case. We assume that s > 1. 

(12) Let A be any measurable subset of (0,1). We claim that p(IT 1A[ > s) = O. 

Let A1, A2 and A3 be three disjoint measurable subsets of A such that  A1 I,J 

A2 U A3 = A. First let A4 = A1 t3 A2 and As be two fixed disjoint sets. (So 

A = ,44 t9 A3.) For 1 > ~ > 0, let 

~ = p([T(1AfuA~ + alA,) l  > s), 

=/A1). 
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By Corol lary 6 and  (5), we have 

(i) p(IT(1A, + a lAs) l  = r )  > 0 if and  only if r = s or r = a s. 

(ii) T1At IIT,A~I_t(,) = O. (So T1A, IIT(,A,+o,,,pI_,(,,.)= o.) 
(iii) p(IT(1A, + ~IA,) I  = *) = ~ ( A , )  when 0 < ~ < 1. 

Let  A4 be a fixed measurab le  subset  of A. We clMm tha t  

(a)  ~ ( 7 )  - w ( p ( A ~ )  - 7 )  = , ' ~ ( ~  + 7A) - a ' A w ( ~  + ( p ( A ~ )  - 7)),) for 

a n Y % 0 < 7 <  2 ' 

(b) the  funct ion a ~ ~a is continuous. 

Proof of claim (a): By Corollary 4, for 1 > a > 0 and  7 < ~(A4), 

fo, w(Od f.cA,  P - P Jr(a, ) - ' t  

= J i m  II(1A' + a lA . )  + elA, II p - ]I(1A, + a l a , ) l ]  p 
eIO e 

-- lira ][(la4 + ala.) + elaffi II P - n(1a4 + a l a . ) l [  p 
e T 0  e 

- - l i ra IITOA, + ~ IA ,  + ' IA,) I I  p -- IITOA, + ~'IA~)II p 
e . l .0  e 

- lira IIT(1A, + ala,  + elaffi)l[ e - [IT(XA, + ~ l a . ) l [  ~ 
,eTO e 

/~~ /p,,+X~,(a,) aew(t)dt. 
=P a t~o - p a t~o+ ~(~(a~)-'~) 

Differentiat ing b o t h  sides wi th  respect  to  7, we have 

Proof of clalm (b): Let $. be a sequence of measurab le  funct ions which converges 

to  f pointwise,  and  let c be  any  real  number .  I t  is known tha t  

O0 O0 

n ~ l  k=n 

n - ~ l  k----n 

Let  a n  be  a sequence in (0,1)  which converges to  a .  We will show tha t  

lira sup ~o. _< ~o _< liminf ~, , .  
N""~O0  71-- ' .00 
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Suppose it is not true. By passing to a subsequence, we may assume that 

limn--.coS,~, exists, limn--.co8a. # 8,~, and [T(1A, + anlA~)l converges to 

IT(1A, + alA.)l a.e. Note: 

(iv) if 0 < a < 1, then 8,~ Jr Ap(A,) = PCITC1A, Jr a lA. )  > s); 

(v) 8, + A(p(As u Aa)) = p(ITIA,oA.I >_ s); 

(vi) 1 - 8 =  = ~(ITC1A, + a lA, ) l  _< s). 

We have 

Hence, 

limsupS~,. Jr Ap(A4) _< 8~ + Ap(A4) 

lim s u p ( 1 -  8a . )  -< 1 -  8a. 
n - - + O O  

when a < 1, 

lira sup 8a.  _< 8a when r < 1, 
n - . ~ O O  

lira inf ~o. > 8~ 

If a = 1, then 

c o  c o  

N U {t: [T(1A, Jr anlAs)[(t) > S -- 2(1 -- an)S} C_ {t: [T(1A, Jr 1A.)[(t) >_ a} 
n-'=l k=-.n 

and 

n - " + ~  

So we have limn-.co ~c,. = 8a. We proved claim (b). 

We claim that 81 = 0. Suppose it is not true. We note that: 

(vii) if ~/is fixed, the lefthand side of formula in claim (a) is a constant; 

(viii) [8o, 81] C_ {8~: 0 < a < 1}; 

(ix) 81 = p(IT1A] > s) > 0 and 80 = p(IT1A, uA, I > s) = ~(ITIA, I > 8). 

For any 7 < ~ and for almost all T/e [80,81], 

w(~)  - w ( ~  + (~(A4)  - 2~))  = ~ ( ~ )  - ~ ( ~ ( A , )  - ~) 

= ~ P ~ ( ~  + ~ )  - ~ P ~ ( ~  + ( . ( A , )  - ~)~) 

=~,~(w(, + ~ )  - ~((~ + ~ )  + (p(A,) - 2~)~)). 

This implies w' is constant on [fl0,81]. (So w is linear on [rio, 8~].) Note: 

(x) if A = A1 U A2 U As is fixed, then 81 is fixed; 

(xi) lim~,(B)-.0 p([T 1BI > s) = 0 (since T is continuous). 
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Fix the set A and let ~(A4) tend to zero. Then fl0 tends to zero. This implies 

that w must be linear on (0,~1). By (11), s = 1. We get a contradiction. So 

~1 = 0. 

(13) We claim that for any measurable set A,/~(0 < [T1A[ < s) = 0. Suppose 

it is not true (so /~(0 < ]T1AI < s) > 0 for some measurable set A). Let 

{B1,B2,... ,Bk} be any partition of A. Since 1A = )"]~j~l 1B~, there is j '  such 

that T1Bj,[{t:0<LTI~I(0<,} ~ 0. But /J([T1B~,[ > s) = 0 and {t: [T1Bi,[(t ) = 

s} _C {t: IT 1A[(t) = s}. So we must have/~(0 < IT 1B~, ] < s) > 0 for some j ' ,  

1 _< j '  _< k. So we may assume that /~(A) < �89 Let A1 and A2 two disjoint 

measurable subsets of (0,1) \ A. Note: 

(i) /~([T 1B] > s) = 0 for any measurable subset B of (0, 1); 

(ii) ~u(tT(1A + alA,  uA,)[ = o~s) = A#(Ax U A2) for 0 < a < 1. 

As the proof of (12) claim (b), 

(iii) the mapping a --* /~a = /~([T(1A + alA1vA2)[ > as) is continuous on 

(0,1); 

(iv) ~ , ( I T ( I ~  + ~1~ ,~ , )1  > ~s) = ~,(A); 

(v) limsupz([T(1A + alA~A,) l  > 0) > z(ITIAI > 0) = &. (Note: we do 
r 

not know whether /~([T(1A + alA,  uA,)[ = 0) = /~([T1A] = 0) for all 

0<a<l.) 

Let 7 = #u(Ax). Compute 

lira ll(IA + ~IA,oA,) + dA, II ~ -- Ilia + ~IA,~A, ll ~ 
e$O 

- lim II(1A + o, IA, oA2) + elA, II p - I I I A  + alA,uA, IIp 
e1"O 

as (12). We have 

fztt(A)+TaP_lw(t)dt f~(A)+.(A,uA,) a'-lw(t) dt 
( A) J ~( A~ +(I~( Ax uA2)-7)  

d~,  -- J~c,+A(#(AtoA2)-7) 

and 

w(,(A) + "r) - w(,(A) + ~(A, u A2) - ~) 

= s ' ~ [ w ( ~  + "r~) - w(:a + ~(~(A, U A2) - ~))]. 
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Let A1 U A2 be a fixed measurable subset of (0,1), and let /~1 = limiT1 ~ = 

a/~(a). Since ~,(0 < Ir la l  < s) > 0,/~1 </~0. As the proof of (12), we have that 
X~AtuA2) /~ w is linear on (/~x + 2 , r q" XI~(A~t.JA~) ). 

Note: /~0 and/~1 depend only on A. Hence, for any 7/ < ~, there exist two 

disjoint measurable subsets A1, A2 of (0, 1 ) \  A such that #(A1 U A2) = 77. So 

w is linear on (/~x + x2-~,/~0 + x2-~) for any 0 < ~/< ~. This implies w is linear on 
+ 

Now, let p(A) tend to zero. Then/~1 tends to zero. This implies w is linear 

on (0, ~). By (11), s = l, and we get a contradiction. So we proved the general 

case .  

5. The isometrics  on complex  Lw,p 

In the complex Lw,v, Lemma 1, Lemma 7, Corollary 6 and Remark 3 become 

LEMMA 1': Suppose that 1 < p < co. Let f be a positive decreasing function in 

Lw,p and let g be any function in L~,,p such that i f  p ( f  = s) ~ O, then Rgll -~( ,  ) 

is decreasing (respectively, increasing). Then 

lira Ilf + egll p - I l f l l  p = p / ( ~ g ) f p - a  wdt 
~0 e J 

(r~pectively, tim, to II/+ egll'e - Ilfllr = pf(sg)fp--X wd•). 

LEMMA 7': Let f be a positive decreasing function in Lw.1 and let g be any 

function in Lw,1 such that 

.(i) Igl is decreasing on {t:  f ( t )  = 0}; 

(ii) if  s > 0 and p ( f  = s) # 0, then ~gly-t( ,)  is decreasing (respectively, 

increasing). 

Then 

l i m l l f + ~ g l l - I l f l t  ~,~ (~g)wdt + ~ Iglwdt 
e~O ~ pp f \ supp 1.I 

(respectively, lira I I / + ' g l l -  II/11 = ( g)w t + Iglw t). 
el"O ~ pp f \ supp L$ 

COROLLARY 6t: Let T be an isometry on Lw,p and let A, B be two disjoint finite 

measurable sets. Let f = T 1A and g = T lB. Then for any complex number a, 

the following are equiva/ent. 

(a) there exists s > 0 and a such that lal = 1 , / , ( I f  + ~gl = s) > o and the 

restriction o fR  (ag sgn f  + ag) to If + ~gl- l(s)  is not constant; 
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(b) there exists a such that [a[ = 1 and 

lira I I ( f  + a g )  + a egiip - I I / +  c~gll' ~ lira l[(f + a g )  + a egl[' - I I / +  o~gll p 
~0 e ~TO e 

(c)  ~he~e exists  ~ s ~ h  ~ha~ lal = 1 ~ d  

lira II(ZA § ~IB)  + ~ l a l l '  - [[1A + o~lBIl' 
~,[o e 

-~ lira II(zA + o~la) + a e l B l [  P - -  IIZA + ,~IBII P 
eTO e 

(d) I~1 = 1. 

Remark 3': Let f and g be as above. Suppose that s > 0 and •([f[ = s) > 0. 

Then both R ( g s g n f )  and ~(ig.  sgnf )  are constant on [f l - l (s) .  Hence, there 

exists a such that  

(i) I~1 = 1 and sgnf Ilil_t(~ asgng I l I l - ' ( .) ;  
(ii) Igl is ~nstant  on lYl-~(, ) .  . 

One can easily verify that  (1)-(3) are still true in complex Lw,p. 

(14) Let A1 be a measurable subset of A and let f l  = T 1A~, f2 = T 1A \ AI 

and f -- T1A. We claim that  of TIA~ s g n f  is real on the set I / I - l (s) .  

Without of loss of generality, we may assume that f is a nonnegative decreasing 

function and p(A \ A1) ~ O. Since 

lira I[1A + i elA1 I1' - IIIAII p 
~o e 

= 0 = lim I[1A + i~lA~ II p - I I I A I ?  
~TO e 

the restriction of Ira f l  to f - l ( s )  is constant. But P(If21 = s) > 0 and If21-1(8) C_ 

] / I - l (s) .  So fllJy~l-l(~ = 0, and the restriction of Imfl  t o / - l ( s )  must be zero. 

We proved our claim. 

One can easily verify (4)-(13). So the Main Theorem is still true in complex 

Lw,p. 
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