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ABSTRACT
Let T be an (into linear) isometry on a (real or complex) Lorentz function
space Lu,p, 1 < p < co. We show that if f and g have disjoint support,
then T f and T g also have disjoint support. Using this result, we give a
characterization of the isometries of Ly,p.

1. Introduction
For any measurable function f on (0,00), the distribution function dy, and

the decreasing rearrangement f* of f are defined by

ds(t) =u(lf] > t),
£*(2) =inf{s > 0: ds(s) < t}
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(where p denotes the Lebesgue measure). Let w be a strictly decreasing positive
function on (0, co) such that

1 00
}in& w(t) = oo, tlim w(t) =0, / w(t)dt =1, and / w(t)dt = oo.

For any 1 < p < oo, the Lorentz space L, , is the space of all measurable

functions f on (0, o0) for which

= ([ e w(t)dt)”’.

fw(t)= ’# for some 1 < p < ¢ < oo, we shall denote the Lorentz space Ly, p

by Lg,p. It is known that the following mappings are isometries on real L, ,:

(i) for any A > 0, DxA(F)(t) = A~MIf(t/N);
(if) for any +1-valued measurable function €(t), S.(f)(t) = (t)f(t);
(iii) for any measure-preserving transformation o, R,(f)(t) = f(o(t)) (for

definition of measure-preserving transformation, see section 2).
Let T be an isometry on Ly p, 1 < p < 00. One may ask the following question.

Question 1: Do there exist s and A such that (T f)*(t) = sf*(t/A) for all f €
Lyypandt € (0,00)?

For any measurable function f, supp f denotes the set

{t: f(t) # 0}.

In [C-Ty], B. Turett and the first author studied the extreme points of the unit
ball of Lg 1, 1 < ¢ < co. They proved that T is a linear isometry from Lg; into
itself if and only if there exists a A = pu(supp ( T 1jp,3)) such that

(T £)*(t) = A7f*(2/).

Recently, S. J. Dilworth, D. A. Trautman, and the first author [C-D-T] studied
the extreme points of the unit ball of L, 1[0,1] and they proved that if T is a
surjective isometry from L, onto itself, then (Tf)*(t) = f*(t) forall 0 <t < 1.

Let X be a Banach space and let z be any element on the unit sphere of X.
X is said to have a Gateaux differentiable norm at « if for every y € X

L e+ eyl = el
€—0 €
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exists. Let 1 < p < oo and let f be any element on the unit sphere of Ly, ;.
It is known that L, , has a Gateaux differentiable norm at f if and only if
¢{|f] = s} =0 for any s > 0. In this article, we study the difference

P P P 4
po I el <A1 IS +egll? = I
€l0 € €10 €

for some f, g € Ly, (particularly, f and g are characteristic functions) and we

prove the following theorem.
MAIN THEOREM: Let T be a linear isometry from Ly, 1 < p < o0, into itself.
Then
(T £)*(@) = sf*(t/N)
where A = p(supp(T 1(o,1))) and s = ":(:.:)". Moreover, if s # 1, then w(y) =
s Aw(A\y) almost everywhere.
This shows the answer of Question 1 is affirmative.

The remainder of the article is divided into four sections. In section 2, we study

the directional derivative of L » norm, and we prove that for any f, g € Ly p,

P P ) . P
o I el = AP 1+ el U]
€l0 € €10 €

if and only if for any s > 0, either u(|f| = s) = 0 or gsgnf is constant on |f|~1(s).
In sections 3, 4 and 5, we use this result to prove the Main Theorem when Ly, ,
is real Ly ,(0,00), real Ly 4(0,1), or complex Ly, 4.

Part of the work was done when the third author visited University of Texas at
Austin. He would like to thank the kind hospitality offered to him. The authors
would also like to thank the referee for his valuable suggestions.

2. Some lemmas
Recall a measurable mapping ¢ from (0,00) to (0,00) is said to be measure-
preserving if for every measurable set A, p(A) = p(0~!(A)). It is known that
for any measure-preserving transformation ¢ and any measurable function f,
f*=(f oo)*. For any two measurable functions f and ¢ , let ¢ be defined by
(*)
o(t) =u({t": |F(E) > |FDI})
+p({t': [f(E)] = |£(t)] and g(t')sgn(f(t')) > 9(t) sgn(£(1))})
+p({t': 1f(E)] = 1f()], 9(t') sgn(f(t')) = 9(t)sgn (f(2)), and ¢’ < t})
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where t € (0,00). It is easy to see that o satisfies the following conditions:
(o) if u(supp f) < oo, then ¢ is a measure-preserving mapping from R into
R; otherwise, it is a measure-preserving mapping from supp f into R;
() 1fl = f* 0, nd |f]| = (f1fPwo o dt);
(il) wo o(t1) = w o o(t3) if one of the following conditions holds.
(a) [£(¢)l > 1f(t2)l;
(b) |f(t1)] = [£(t2)| and g(t1)sgn(f(t1)) > ¢(t2) sgn(f(t2));
(c) 1£(t0)l = |£(t2)], 9(t1) sgn (f(t1)) = 9(t2) sgn (f(t2)), and ) < 1.
First, we assume that co > p > 1.
LEMMA 1: Suppose that oo > p > 1. Let f be a positive decreasing function in
L, and let g be another function in Ly, such that if s > 0 and u(f = 3) # 0,

then g is decreasing (respectively, increasing) on f~(s). Then

P 4
Hrn "f’4%egH ILf” ==17}(5]fp-110dt

€l0 €

P | flIP
(respectively, lcigx 1f + eg"e (M = p/_qf"_l wdt).

Proof: We only prove the first equality and the other is left to the reader.

Since f is a nonnegative decreasing function,

P P P P
i LA =WV S 20l PV [t

€l0 € €l0 €

To prove the other direction, we may assume g is a bounded function. For any
€> 0, let o, (replace f by f + €g in (*)) be a measure-preserving mapping which
satisfies the following conditions:
(@) If +egl=(f+eg) oo
(i) wooe(t1) > w o o(t2) if one of the following conditions holds.
(a) I(f + eg)(ta)l > |(f + eg)(t2)];
(b) I(f + eg)(t1)] = |(f + €g)(t2)| and
9(t1) sgn(f + eg)(t1) > g(t2) sgn(f + eg)(t2);
(€) I(f + eg)(t2)| = (£ + eg)(t2)l;
g(t1)sgn(f + eg)(t1) = g(t2) sgn(f + eg)(t2) and t < 1.
Then there exists 0 < a, < € such that

If +egll® = IfIP o JASf +egl” = |fP) wo oedt
€ - €

=P/g'ssn(f+aeg) Af + gl - w o ocdt.
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Since both f and w are nonnegative decreasing functions and the restriction of ¢
to f~1(s) is decreasing for any s > 0 with u(f = s) > 0, we have limjg 0(t) = ¢.
The verification of

lcijr,f)lp/g : Sgn(f + aeg) . |f+ aeglp—l -woodt =p/gfp‘11‘)dt
is left to the reader. |

Let o be any measure-preserving transformation, and let A be any measurable
set such that A = 0~1(B) for some measurable set B with u(B) > 0. A measur-
able function f is said to be decreasing (respectively, increasing) with respect
to o on A if for almost all ¢, 2 € A, f(t1) > f(t2) (respectively, f(t1) < f(12))
implies w 0 o(t;) > w o o(tz). If A = (0,00), then we say f is decreasing with
respect to . Lemma 1 can be restated as:

LEMMA 2: Let f, g be any two elements of L, , and let o, o' be two measure
preserving transformations whch satisfy the following conditions:
(a) |f| is decreasing with respect to o (respectively, o');
(b) if s > 0 and p(|f] = s) > 0, then gsgnf is decreasing (respectively,
increasing) with respect to o (respectively, ') on | f|7(s).

Then

Lim ”f+€g"P - ”f“? __:p/g'f]}’—l (sgnf)w o odt

€0 €

(respectively, l‘%l If + eg”: — AP = p/g |1P~? (sgn f)w o o'dt).
Remark 1: Suppose that co > p > 1. It is known that there is a measurable
function f such that for any measure-preserving transformation o, f* # |f| o 0.
But for any f, ¢ € Ly p, there exist measure-preserving transformations o and
o' which satisfy the assumptions of Lemma 2. Hence, for simplifying our proofs,
we assume that for any measurable function f, there is a measure-preserving

mapping o such that f* = |f| o 0. We leave all details to the reader.
Remark 2: 1t is known [P] that if X is a Banach space, then for any z,y € X,
=t =1 =llyll,

P _ 4
ozt el |z
€l0 €

=psup{(z”,y): |z°]| =1 = (z*,2)}.
Lemma 1 is a corollary of the above well-known fact. |

Since w is strictly decreasing, we have the following corollaries.
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COROLLARY 3: Let f and g be any elements in Ly, p. Then

o M+ egllP = WP _ g I+ egll? — AP

clO €10 €

if and only if for all s > 0, u(lfl = 8) > 0 implies g - sgnf is constant on |f]~1(s).

COROLLARY 4: Let f be a nonnegative decreasing function in L, p such that f
is strictly decreasing on (0,1) and (2,00), and f(t) =1 if1 <t < 2. For any
element g € Ly, p, let B be the collection of measurable functions h which satisfy
the following conditions:

(i) h(t) =g(t) ift € (0,1) U (2,00);

(i) for any r € R, p({t € (1,2): h(t) > r}) = u({t € (1,2): g(t) > r}).
Then

Ul el Z Uy 17+ el 11

elo €t0 €
2
=supp/ h(t) w(t)dt — infp/ h(t) w(t)dt.
heB J1 hes" Jy

Let h be any element in B. Then
oM+ eyll" — AP I eyll” — AP
10

510

—p /1 h(t) w(t)dt — p /1 h(2 — t) w(t)dt

if and only if h is decreasing on (1,2).

COROLLARY 5: Let A be a finite measurable subset of (0, 00), and let B be any

measurable subset of A.
1 1gllP — P P |14llP
i 1At elallP = 1LallP . J1a+elpll® — |14l

€l0 € €10 €
1clI? = |[14]17 P_ ?
— up (hm 14+ el = 14l _ . 14+ elcll” — |11l )
ccA\¢lo € eTo €

if and only if u(B) = }p(A).

COROLLARY 6: Let T be an isometry on Ly, p, and let A, B be any two disjoint
finite measurable sets. Let f =T 14 and let ¢ = T'1g. Then for any real number
a, the following are equivalent:

(a) there exists s > 0 such that u(|f + ag| = s) > 0 and gsgn(f + ag) is not
constant on |f + ag|~(s);
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(b) Lim Wten el <iftaol? 4 iy U +an el ~)iragl?
€ € 3

€l0 ef0
(c) lim I(1a+alp)telpl|P—|[1a+alp]l’ # lim (1atalp)+elp|if—|1a+als]®,
€l0 € €10 € !
(d) a=+1.

Remark 3: Let s be any positive real number such that u(|f| = s) > 0. By
Corollary 6, g - sgn fl|5)-1(s) is constant. If g - sgn f||f)-1(s) # O, then

(i) sgnglis-1(s) = £58n fli51-1(a)3
(i) |g| is constant on |f|~1(s). |

If p=1, Lemma 1 becomes

LEMMA 7: Let f be a positive decreasing function in Ly, and let g be any
function in Ly, ; such that
(1) if s # 0 and p(f = s) > 0, then g |,_l(’) is decreasing (respectively,
increasing);
(ii) |g| |f—1(0) is decreasing.
Then

Lim "f+6g”'—”f" =/ gwdt+/ Iglwdt
supp f R supp f

€l0 €

(respectively, im _||f+—€g||—_||i_|l = / g wdt +/ lg| wdt).
efo € supp f R supp f

By Lemma 7, one easily sees that Corollaries 3-6 hold if p = 1. We leave all

details to reader.

3. The isometries on L, 5(0,00), 1 <p< oo

Let T be any isometry on Ly p(0,00). It is known that L, , is separable. To

prove Main Theorem, it is enough to show that

(i) there is s > 0 such that for any finite measurable set A, [T14| = slp
where B = supp (T 14);
(ii) if A, B are two disjoint finite measurable sets, then T'14 and T'1p are
disjoint.
We do not know any easy way to prove (i) and (ii). Our proof is divided into
seven steps. In the first three steps, we show that there is a unique s > 0 such
that p(|T 14| = s) > 0 for any finite measurable set A. Moreover, if A and B
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are two disjoint finite measurable subsets of (0,0), then the restriction of T'1p
to |T'14]|7%(s) is zero. (This is equivalent to {t: |T'14|(t) = s} U {t: |T 15|(t) =
s} € {t: [T 14uB|(t) = s}.) Next, we show that if A and B are two disjoint finite
measurable sets, then |T'14up]~1(s) = |T14|7Y(s) U |T 15|~*(s). The proof is
quite long, and we do not know any simple proof. The proof contains two steps.
Let A be any finite measurable set and let A;, Az, A3 be three disjoint proper
measurable subsets of 4 such that A = A; UAz U A;. In step 4, we show that for
any t € [T'14]|71(s), one of T14,(t), T14,(t), T14,(t) must be zero. (This is
equivalent to at most two of T'14,(t), T 14,(t), T 14,(t) are nonzero.) In step 5,
we show that at most one (so exact one) of them is nonzero. The remainder two
steps show that p({t: 0 < |T'14|(t) # s}) = 0. Let A be any finite measurable
subset of (0,00). In step 6, we show that for any measurable subset B of A,
W(T 1) =3s) _ p(IT15] = 3)

1(4) wB)
(Note: this implies that fﬂ%ﬁF—ﬂ = ﬂl%_g{ﬂl for any two finite measur-
able subsets A, B of (0,00).) Using this result, we show (step 7) that w(y) =
sPAw(Av). This implies for any finite measurable set A4,

I1all = llsYira,-1)ll 1T 1all = fI14]l-

So we must have {T14] = s1j71,~1(s)-

(1) We claim that for any finite measurable set A, there exists s > 0 such that
p(IT 14 = 8) > 0.

Let A;, A; be two disjoint subsets of A such that 4; U Ay = A. We denote
T1a,,T14, and T14 by fi, fo and f. By Corollary 6, there exists s > 0 such
that u()f] = s) > 0, and the restriction of fysgn f to |f|~1(s) is not constant.

We proved our claim.

(2) Let A, A;, f, f1 and s be given as above. Let B be another finite mea-
surable subset of (0,00) such that BN A =0, and let ¢ = T'1g. We claim that
910 = O

Suppose that it is not true. By Remark 3, sgng ‘Ifl"(')= +sgn f llfl"(-')
and the restriction of |g| to the set |f|~1(s) is constant. So there exists r > 0
such that |f|~1(s) C |g|~!(r). Note: A, and B are disjoint. By Remark 3 (or
Corollary 6), the restriction of f1sgng to |g|~!(r) is constant. This implies

fi-snf o= £h 5809 |-
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is constant. We get a contradiction. So g |I -0~ 0.
Note: we did not prove that for any s > 0, u(|T 14} = s) > 0 implies T15 =0
on |T'14]|7}(s) for every B such that AN B = §. We only proved that it is true

for some s > 0.

(3) We claim that there is a unique s > 0 such that for every finite measurable

set A
(i) if p(A) > 0, then u(|T 14| = s) > 0;
(i) if r >0 and r # s, then p(|T 14} =7r) =0;
(iii) for any two disjoint measurable sets A and B, |T'14]|™!(s) and [T 15]7(s)
are disjoint.
Let s be the number given as above. Suppose r # 0 and u(]g|~*(r)) > 0. By (2),
9lis1-1(s) = 0. Since B and A are disjoint, by Corollary 6, there exist ¢ > 0 and
a = %1 such that
f I|g|‘1(r)= ac-sgnglig-i(s)-

Hence, the restrictions of |f + ﬂ_’r-_°29| and |f + ﬂ%:ﬂgl to the set |f|7}(s) U
|g|~1(r) are constant. By Corollary 6 again, we have

$—C —8—cC

=+1 and =-1.

r
But s #0. So ¢ = 0 and r = 3. We proved that for a fixed finite measurable set
A, there is s > 0 such that for any r > 0 and any finite measurable set B which
is disjoint with A,

p(|T1p|=r)>0 ifandonlyifr=s.

The remainder of the proof is left to the reader.
From now on, s is a fixed positive number such that u(|T14| = s) > 0 for
every finite measurable set A, u(A) > 0.

(4) Let A;, Az, A3 be three disjoint proper subsets of A such that A = 4; U
Az U A;. We denote T'14,, T14, and T14, by fi, f2 and f3. Without loss
of generality, we assume that f is a nonnegative decreasing function and the
restriction of f; — f2 to the set f~1(s) = [a, ] is decreasing.

We claim that

(a) both f; and —f, are decreasing on f~1(s);

(b) fifafs |[a’b]= 0. (So for every t € [a,b], one of fi(t), f2(t), f3(t) must be

zero.)
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Suppose claim (a) were proved. If A;, A; are two disjoint measurable subsets
of A, and if f = T'1a, fi = T14,, f2 = T1,4,, then there exists a measure-

preserving transformation o such that
(i) |f| is decreasing with respect to o;
(ii) (f1— f2)sen f, fisgn f and — f; sgn f are decreasing with respect to o on
[F172(s)-
Proof of (a): Without loss of generality, we may assume that A; = (0,¢], A3 =
(c,d) and 4; = [d,1]. Then

b
p / AL Dw(t)dt —p / fila+b— )P~ L (Bw(t)dt
¢ b ¢ b
+p / (=F2)®) P (Du(t)dt — p / (=F2)(a +b - ) (Ew(t)dt

b b
—p / (fr = )OS (Eu(t)dt —p / (1 — fo)a+b—£)f " (t)w(t)dt
= P = AP+ el = P = AP

€}0 € €10
_ P 4 _ P _ ) 4
o At el = L) = 1Al 14+ (lay = 1a)IP = ILal
€l0 € €10 €

1 1
- / (14, — La,)(E)w()dt — p / (La, = 14,)(1 — tw(t)dt
=p ./01 14, (t)w(t)dt - p/ol lAl(l ~ tw(t)dt

1 1
+p [ (CLa)Ou(tdt - p [ (~1a)1 -~ hu(t)d
0 0
i Bt Ll — AP el P~ Ll

€l0 € €70 €
+limtaz elAzII" —2all? _y Ma— elA,II" — lI1a4ll”
€l0 eTO
o M eflll" - IIfII” oM fflll" - |Ifl|”
elo eTO
o = elel’ | T e elel’ - I1IP
elo eTO

By Corollary 4, we have
/ AOF w()dt - p / fila+b— O)f " (tu(t)ds
ML =Wy 17+l 111

elo eTO €
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and

b b
P / (= R)OF ()t / (~f2)(a +b - ) fP~ (Hu(t)dt
o Uf = ehlP = _If = ehl 1P

€10 € €10 €

By Corollary 4 again, both f; and —f; are decreasing on [a, b]. We proved (a).

Proof of (b): Note that

(iii) f1 and —f; are decreasing on |a, b};

(i) 1fol71(s) € [a, Bl

(v) since u(|fs| = s) > 0, both f; and f; are zero on |f3|~1(s).
There exist ¢, d', a < ¢’ < d' < b, such that f; and f, are zero on (¢,d’). So
— fif2 must be nonnegative on [a,b]. Similarly, —f3f; and — f3 f, are nonnega-
tive on [a,}] (since any rearrangement does not change the sign). This implies
—(f1f2f3)? is nonnegative on [a,b]. And f, f; f3 must be zero on [a, b]. We proved

our claim.

(5) We claim that for any t € [a, b], exact one of fi(t), f2(t), f3(t) is nonzero.
Suppose that the claim were proved. Then for any two disjoint finite measurable
sets A and B, we have

(i) |T14]7Y(s) and |T'15|7(s) are disjoint;
(ii) 1T 1auB|™!(s) = IT 14|7}(s) U |T 15| (s);
(iii) T14-sgn(T14uB) ||T1M|_l(,)= s1iT1,0-1(s)-
Suppose the claim is not true. Without loss of generality, we may assume that
there exists ¢, a < t < b, such that

A+ f2(0)=s, AF)>0 and fi(t) <.
Since both f; and —f, are decreasing on [a, b}, for any ¢’ € [a, 1),
HA{) > s, f2(t') <0, and fi3(t')=0.

Let [a,c) = {t' € [a,}]: f1(¢') > s}. (So ¢ > a.) Then

(iv) fi is strictly decreasing and f; > s on [a,¢c).
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SUBCLAIM 1:  f3][4,c) = 0. Note: f; is zero on [a,t]. Suppose Subclaim 1 is not
true. Then there exists r € (¢,c) such that f3(r) < 0 and f,(r) = 0. Note: the
— f2 is decreasing on [a,b], and fi + f2 + f3 = s on [a,}]. So we have
(v) fs is negative on (r,c) (because f > 0 and f; > s on (r,c)).

(Note again: f; is zero on [a,t) and t < r.) So for any measure-preserving
mapping ¢ on [a, b}, either f; o o is not decreasing or (—f3) 0 0 is not decreasing.
We get a contradiction.

Let A4 and As be two disjoint measurable subsets of A; such that 4; = A4UAs.

SUBCLAIM 2: IfT14,l{a,c) # 0, then T'14,|[q,c) = 0. By (4), there is a measure-
preserving transformation o on [a, b] such that both (T'14,) 00 and (~T14,)00
are decreasing. Since f) is strictly decreasing on [a, ¢] the restriction of & to [a,c]
is identity. But T'14,](s,c) # 0. So the above proof shows T'14,u4,|[a,c) = 0 and
T'144l{a,c) = O (note: we already proved that T 14, is zero on [a,c]). We proved
subclaim 2.

Since A has finite measure, for any € > 0, there is a partition {By, Ba,..., B}
of A; such that u(B;) < eforall1< J £ k. The above argument shows that for
some 1 < j < k, Tlp;|(a, = f2lfa,- But T is an isometry. This is impossible.
We proved our claim.

(6) Let A be any finite measurable set and let f = T'14. We claim that for
any measurable subset B of A,
WT 1l =9) _ w(T1sl = 9)
p(A) #(B)
(5) shows that for any subset B of A

T1psgnf ||!|-1(,)=31|T13|'1(a)-
Since T is continuous, there exists a measurable subset A; of A such that
W(IT 1a,] = 8) = 3(lf] = ). So
P _||1.4llP 1 14 1P = 114117
i LAt €lay |1 = lLallP _p. l1a+€la|I® = |iLa]

€l0 € 10 €
P _ } 4 P _ ?
TN 70 Vel 4 YN R VNl
€0 € €10 €
P _ » Tl P _ P
~ sup (Hm If +eT1plP AP |\ + €T 1507 — 1] )
BCA\<l0 € €10 €

la+elplP —J1alP .. |lla+elpllP =14l
~ sup (lim 14+ elpll” — J1allP . 1114+ elp|l? — |I1a] )
B_A €l0 € €10 €
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By Corollary 5, u(A;) = 34(A). Hence, for any subset 4; of A, p(4;) = 1p(4)
if and only if u(|T 14,] = s) = (/T 14| = s). By induction, we have

1 . . 1
#(A1) = oou(4)  if and only if p(|T 14| = 8) = ou(|T 14| = s).

Since T is continuous, we must have
pT14l=5) _ p(T1p| =)
K#(4) #(B)
for any measurable subset B of A. Let A = "—(L%lﬁ}ﬂ. The proof also shows for
any finite measurable subset B of (0, 00),
p(T1p|=s) _
#(B)

(7) We claim that for any v > 0, w(y) = s?Aw(Ay). Let A be any finite
measurable set and let § = p(|T(14)] > s). If A, is a measurable subset of A4,
by (5) and (6)

() {t: IT14,|(8) = s} S {t: [T 14l() = s};
(i) #(|T 14| = 8) = Au(A4), and p(|T 14, = s) = Au(41).

(i) T14- sgn(T 14uB) llTlAual“(l)= 3 I‘TIA'-I(,).
Hence, if u(4,) =7 < L(;—Q, then

¥ n(A)
? / w(t)dt —p / w(t)dt
0 #(

A

)=y

PO N L PRt PN L L
(**) €l0 € €10 €

i T LA+ T 1ag [P = (IT1AP . T 14 + T 14, = [T 14]°

€l0 € €10 €
Av+8 B+Au(A)
=p / sfw(t)dt — p / sPw(t)dt.
8 B+A(u(A)—v)

Differentiating both sides with respect to -y, we get
(xx%)  w(7) - w(u(4) —7) = Aw(B +Xy) — w(B + Au(4) - 1)

Let {A;} be a sequence of finite measurable subsets of (0,00) such that
lim; o0 #(Ai) = 00, and let §; = p(|T 14;)| > s). Then for any v > 0,

w(y) — w(p(4;) = v) < sPhw(B; + Ay).
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Since limy—oo w(t) = 0, {Bi: ¢ € N} is bounded. Without loss of generality, we

may assume that {§;} converges to 8. Then

w(y) = lim (w(y) - w(p(4i) - 7))
= lim sPA[w(Bi + Ay) — w(Bi + A(u(4i) - 7))]
=sPAw(B + A7)

for almost all ¥ € R. So for any finite measurable subset A of (0, 00),

#(A)
Inall = [ wityas
0
s(A)
=/ sPAw(B + At)dt
0

Au(A)

= / sPw(f + t)dt
0
B+Au(A)

- / sPw(t)dt
8

Au(A)
< / Pu(t)dt
0

=lls L 1a-1I” < (T 14l

But T is an isometry. So we must have

B=0, |sliouapll=1T1all, and (T14)* =s1(0,ru(4))-

We proved our Main Theorem.

4. The isometries on Ly (0,1)

Let T be an isometry on Ly, »(0,1), and let A be any finite measurable subset of
(0,1). In section 3, we proved that there exist s > 0 and A > 0 such that if 4,
is a measurable subset of A, then
() {& IT14,08) = s} € {8: ITLAI(H) = s},
(i) u(IT 14| = s) = Ap(A), and p(|T 14,] = s) = Au(41);
(i) T14-sgn(T 14uB) |lTlAunl“(i)= SLiT1,-1(s)-
So we have 1 > u(|T 1(0,1)| = 8) = .
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To characterize the isometries on Ly (0,1), we need more work. We divide the
proof into six steps. In the first 4 steps (Steps 8-11), we consider the following
four special cases:

(iv) s=1.

(v) T is a surjective isometry.
(Vi) Lw,p = Lgp.
(vii) There is ¢ > 0 such that w is linear on (0,c). (Note: in this article, we
do not use the fact lim;_o+ w(t) = 00.)

In Step 11, we show that if w is linear on (0,c) for some ¢ > 0, then s = 1.
Hence, for any measurable subset A of (0,1), (T'14)* = 1(o,4(4))- (This is a fact
which is proved in Step 8.)

In Step 12 and Step 13, we show that u(|T'14] > s) = 0 and p(0 < |T14] <
8) = 0 for every measurable subset 4 of (0,1).

Assume the above claims were proved. Then (T'14)* = s1(o,apu(4)). This

/07 w(t)dt = ‘/0‘«\7 sPw(t)dt.

implies

So w(y) = s? Aw(Xy).

(8) We claim that if s = 1, then for any measurable subset A of (0,1), (T'14)* =
1(0,u(4))- Let B,7 be two positive numbers such that 8+ < 1. It is easy to see
that

() if B+ I < L, then

p+1 Bty p+3 1-5
/ w(t)dt — / w(t)dt < / w(t)dt — / w(t)dt
B B8+3% B 1-8-1

1

< /o * w(t)dt - / " w(t)d;

2

(i) if B+ F > 3, then

/ﬂ 3 eyt - /ﬂ T (bdt < / T - /ﬂ i:w(t)dt

+3 1-f—«

< /0 ' w(t)dt — /% l w(t)dt.
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1

’ w(t)dt — /1 w(t)dt,
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L

B+3 B+
/ w(t)dt — / w(t)dt < /
s f+1 0 :

and the equality holds if and only if § = 0 and v = 1. By (*#) (with A = (0,1),
Ar=(0,1),
1/2 1 p+3 B+A
/ w(t)dt - / w(t)dt = / Pu(t)dt — / Pw()dt.
0 1/2 8 B+3

So we must have s > 1. Moreover, if s =1, then A = 1. Hence, if s = 1, then
Tl =1y aad (T14)" =1e,ua4)
for every measurable subset A of (0,1).

(9) Let T be a surjective isometry on Ly, (0,1). Since T~! is also an isometry,
there is s' > 0 such that p(|T~'1()| = s') > 0. It is known that s’ > 1.
We claim that s’ = s~!. If the claim is true, we must have s = 1. By (8),
(T 14)* = 1(g,u(4)) for every measurable subset A of (0,1).

In section 3, we proved that for any (finite) measurable set A and any function
fin Ly.p, if supp f is disjoint with A, then T f is zero on |T14|7!(s). Let
By = |T'1(o,1y|7"(s), and let Bz = [T~ (T'1(0,1) 1B, )|~ (s ¢'). The above remark
shows

T (T 1,) 1o~ p,)=0 on B,

But T~ T'1(g,1) = 1(0,1). So we must have ss' = 1, and we proved our claim.

(10) Let Ly p be an L, ,-space. It is easy to see that

A/2 ap/9—1 A /g1
/ P / PP
0 q A/2 q

B+A/2 tple-1 B+A tr/a—1
=  sup (/ 4 dt — / P dt).
0<A<p+A1\Jp q p+rz 4

By () (with A = (0,1), 4, = (0, %))

1/2 4p/g-1 1 /a1
2“5—1=/ pt dt—/ P
0 q 1/2 q

A2 op gp/e~1 A L gpyple—1
< / psP et L / psP Pt
(] q /2 q

___37[2(.’21)1»/1 — \P/1),




Vol. 84, 1993 ISOMETRIES OF THE LORENTZ FUNCTION SPACES 281
This implies s > A~/ > 1, and
A psptplq—l /
IT 1o,0llP 2 7160, 11-2 )l = _/ —q—dt =sPAPIE > 1 = |10 |IP.
0
Since T is an isometry, we must have
s=ATY (T14) =AY,y and (T *(E) = A"V (t/N).

(11) Suppose that w is linear on (0, c) for some ¢ > 0. We claim that s = 1.
Let w(t) = b — at whenever 0 <t < c. Let A be any measurable subset of (0,1)
such that u(A) < c. Let 8 = p(|T 14| > s). Since ||14]| = ||T 14]| and s > 1,

B+ u(4) = u(T 14l 2 8) S c.
By (* * %), for almost all ¢ € (0, ﬂ,‘,ﬂ)

a(i(A) - 2t) =b — at — (b — a(u(4) — 1))
=P\ — a(B + M) — (b — a(B + A((4) ~ )]
=s? A2a(p(A) — 2t).

Since a > 0, we have s?A? = 1. So
u(supp(T14))
|wuw=/ (T 1A))P(E)(b - at)it
/]

p(A)X

2/ sP(b — at)dt
0
#(A 4 ;

s#(A4)
> / b—atdt = ||1a],
0

and the equality holds if and only if A = 1 (and s = 1). We proved our claim.

Now, we prove the general case. We assume that s > 1.

(12) Let A be any measurable subset of (0,1). We claim that u(|T'14| > s) = 0.

Let A;, A and Aj; be three disjoint measurable subsets of A such that 4; U
A2 U A3 = A. First let Ay = A; U A; and A; be two fixed disjoint sets. (So
A=AUA3) For1>a>0,let

Ba = #(|IT(1 4,04, + ala,)l > 3),
7 = #(4y).
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By Corollary 6 and (5), we have
() p(|T(1a, +aly)|=r)>0ifandonlyif r=sorr=as.

(i) T1a, ||m,|-1(a)= 0. (So T'14, 'IT(IA. ratap)|-i(as=0")
(iii) p(|T(1a, +ala,)|=3) =Apu(As) when0 < a < 1.

Let A4 be a fixed measurable subset of A. We claim that

(a) w(v) — w(u(As) = 7) = sPAw(Ba + 1A) — sPAw(Ba + (#(4s) — 7)A) for
any 7,0 <7< A?l;

(b) the function @ — S, is continuous.

Proof of claim (a): By Corollary 4, for 1 > a >0 and v < L(%l,

v #(A4)
p/ w(t)dt —p/ w(t)dt
0 2

(Ad)—r
=1lim "(1114 + alAs) + €lg, "P - "(1-44 + 01,4,)”’
€0 €
—lim l|(1A4 + alAa) +€ly, "p - ||(1A4 + alAa)",
€70 €
o [T+ alag L)l = [T (L + ala )P
€l0 €
—lim "T(lAq +aly, + 5141)"’ - "T(1A4 + alﬁa)"p
10 €

ﬁa+‘7'\ pn+Al‘(A4)
=p/ sPw(t)dt —p/ sPw(t)dt.
Ba ﬂa+x(l‘(A4)"7)

Differentiating both sides with respect to v, we have

w(v) — w(p(As) — 7) = sPAw(Ba +72) — P Aw(Ba + (B(As) —7)A).

Proof of claim (b): Let f, be asequence of measurable functions which converges
to f pointwise, and let ¢ be any real number. It is known that

{t: Fal) > = 2} C {: £ 2 0

s
Cs

3
Il
-
”
Il
]

{E:ful) < e+ T} € {1 S <)

s
Cs

3
I
-
»
]

n

Let a, be a sequence in (0,1) which converges to a. We will show that

limsupﬂan —<— ﬂa S ligi;l,fﬂan'

n-+00
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Suppose it is not true. By passing to a subsequence, we may assume that
limp—oo Ba, exists, limg—oo fa, F# Pa, and |T(1la, + anls,)| converges to
|T(14, + als,)| a.e. Note:

(iv) if 0 € & < 1, then 8o + Ap(As) = u(|T (14, + aly,) 2 8);

(v) By + Mp(As U Aq)) = p(|T 1a,044| 2 9);

(vi) 1 - Ba = p(IT (1a, + ala,)| < 9).

We have
limsup fBa, + A(As) < Ba + Au(As) when a < 1,
R=—00
limsup(l — fu,) < 1 — fa-
n—oo
Hence,
limsup Ba, < Pa when a < 1,
lim infﬂan 2 fa.
n—0
If a =1, then

() U170+ 0n1a (0 > = 21 = an)s} € {8 [T(Lay + 1410 2 o)

n=l k=n
and

limsup fa, + A(s(As) + 4(4s)) < b1 + Mp(4e) + p(As)).

So we have limp—o0 Ba,, = fa- We proved claim (b).
We claim that 8, = 0. Suppose it is not true. We note that:

(vii) if 4 is fixed, the lefthand side of formula in claim (a) is a constant;
(viii) [Bo,B1] € {Ba: 0<a <1}
(ix) B = p(IT 14l > s) > 0 and fo = p(IT 14,u4,| > 8) = p(IT 14| > 9).
For any v < ﬂ# and for almost all 5 € [, 4],

w(y) — w(y + (8(As) — 27)) =w(y) — w(p(Ad) —7)
=sPAw(n +72) - sPAw(n + (u(Ad) — 7)A)
=sPA(w(n +7A) — w((n +72) + (#(A4) — 27)A)).
This implies w’' is constant on [y, 81]. (So w is linear on [By, #1].) Note:

(x) if A = A1 U Az U A is fixed, then B is fixed;
(xi) lim,(B)—o #(|T 18| > 8) = 0 (since T is continuous).
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Fix the set A and let u(A4) tend to zero. Then fy tends to zero. This implies
that w must be linear on (0,5;,). By (11), s = 1. We get a contradiction. So
p1=0.

(13) We claim that for any measurable set A, p(0 < |T'14| < s) = 0. Suppose
it is not true (so p(0 < |T'14] < s) > 0 for some measurable set A). Let
{Bi1,Baz,...,Bi} be any partition of A. Since 14 = E§=1 1p;, there is j' such
that Tlgj,|{t: 0<|T14|(8) <5} # 0. But ;J(ITIB’.,I > s) = 0 and {t: ITIB,.,l(t) =
s} C {t: [T 14l(t) = s}. So we must have (0 < [T'1p,| < s) > 0 for some j',
1 £ j' £ k. So we may assume that u(4) < % Let A; and A; two disjoint
measurable subsets of (0,1) \ A. Note:

(i) u(|T 18| > s) = 0 for any measurable subset B of (0, 1);

(i) p(|IT(1a + ala,ua,)| =as) = Ap(A1UAg)for0< a< 1.

As the proof of (12) claim (b),

(iii) the mapping @ — B4 = p(|T(1a + ala,ua,)| > as) is continuous on
(0,1);

(iv) Lim p(|T(1a + ala,ua,)l > as) = du(A);

(v) imsupp(|T(1a + ala,ua,)| > 0) 2 p(|T 14| > 0) = fo. (Note: we do
noatuicnow whether u(|T (14 + ala,ua,)| = 0) = p(|T14] = 0) for all
0<a<l)

Let ¥ = p(A;). Compute
i N(ta +edaua;) + el |I” = |14 + alaua,|®
elo €

i M4+ alayua,) + €lay [P — 114 + alayum P
€10 €

as (12). We have

n(A)+y 8(A)+n(A1UA3)
/ o lu(t)dt — / of L (t)dt
u(A) (A4 (n(A1UA3)—7)

BatrA BatA I‘(AIUAi)
= / sPaP 1w (t)dt — / sPa? w(t)dt
o ﬂa+A(l‘(Al UA!)_"’)

and

w(p(A4) +7) — w(p(4) + p(4A1 U 43) — )
=sPAw(fa + YA) — w(Ba + A(u(A1 U Az) —7))).
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Let A; U Az be a fixed measurable subset of (0,1), and let 8 = limat1 By =
Ap(A). Since p(0 < |T'14]| < 8) > 0, B1 < Po. As the proof of (12), we have that
w is linear on (B; + M_A;UA)’% + w).

Note: fp and f; depend only on A. Hence, for any < %, there exist two
disjoint measurable subsets A;, Az of (0,1) \ A such that u(A; U 4A3) = 5. So
w is linear on (B; + -)‘i'l,ﬂo + %") for any 0 < n < }. This implies w is linear on
(B1, 81 + 3).

Now, let u(A) tend to zero. Then B, tends to zero. This implies w is linear
on (0, -4’3) By (11), s = 1, and we get a contradiction. So we proved the general

case.

5. The isometries on complex L, p

In the complex Ly p, Lemma 1, Lemma 7, Corollary 6 and Remark 3 become
LEMMA 1': Suppose that 1 < p < 0o. Let f be a positive decreasing function in
Ly p and let g be any function in L., p such that if u(f = s) # 0, then Rgls-1(,)
is decreasing (respectively, increasing). Then

lim Il.f + eg"p - ".f"P — p/(“Rg) fp—l wdt

€0 €

IIf + egll” — I £1I”
€

= p/(?Rg) P wdt).

LEMMA T': Let f be a positive decreasing function in L., and let ¢ be any

(respectively, lim
€10

function in L,y such that
(i) |g| is decreasing on {t: f(t) = 0};
(ii) if s > 0 and p(f = s) # O, then Rg|s-1(,) is decreasing (respectively,

increasing).
Then
tyn M ol = AL / (Rg)wdt + / lg] wdt
€lo € supp f R N\ supp U
(respectively, lim 1 + egll = AN = / Rg)wdt + / lg] wdt).
1o € supp f R\ supp U

COROLLARY 6': Let T be an isometry on L, , and let A, B be two disjoint finite
measurable sets. Let f =T 14 and ¢ = T1p. Then for any complex number a,
the following are equivalent.
(a) there exists s > 0 and a such that |a| = 1, u(|f + ag| = s) > 0 and the
restriction of ® (ag sgnf + ag) to |f + ag|~(s) is not constant;
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(b) there exists a such that |a| =1 and

. N(f+ag)taegl? = |If +agll? .. I(f+ag)+aeg|?—|f+ag|?
ISI?”( ) eII I I #13%},1”( ) ell I II;

(c) there exists a such that |a| =1 and

i (14 +als) +aelp|l” — [[14 + alp|?
€]0 €
(14 + alp) +aelp|l? —||1a + alB|P

.
# im ; ;

() Ja} = 1.

Remark 3': Let f and g be as above. Suppose that s > 0 and u(|f] = s) > 0.
Then both R (gsgn f) and R (ig - sgn f) are constant on |f|~!(s). Hence, there
exists a such that

(i) la| =1 and sgnf ||f|—1(,)= asgng |m-1(,);

(i) |g| is constant on |f|~1(s). |

One can easily verify that (1)—(3) are still true in complex Ly, p.

(14) Let A; be a measurable subset of A and let fi = T14,, o =T1, ,
and f = T'14. We claim that of T'14, sgn f is real on the set |f|71(s).

Without of loss of generality, we may assume that f is a nonnegative decreasing
function and p(A N Ap) # 0. Since

i AL~ AP _ (i, P = 1Al
€l0 € 30 €

the restriction of Imf; to f~1(s) is constant. But u(|fz| = 8) > 0 and |f2|71(s) C
|£171(s). So filifs1-2(s) = 0, and the restriction of Imf; to f~!(s) must be zero.
We proved our claim.

One can easily verify (4)-(13). So the Main Theorem is still true in complex

Luyp.
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